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Abstract. Using a careful extrapolation method of the exact results for systems with a 
small number of particles N 4, we estimate the thermodynamic limit of the free energy 
density and correlation energy for the Mehta-Dyson one-dimensional plasma with long 
range logarithmic interaction. Our results are then compared with those of the exact 
solution (the Mehta formula), which is established for every value of the plasma parameter 
y = e 2 / k T .  

1. Introduction 

During the past few years there has been considerable interest in the study of the 
v-dimensional Coulomb systems with long range interactions between particles, in 
particular the v-dimensional one-component plasma (Hansen and Pollock 1973, 
Malmberg and O’Neil 1977, Kalman 1978, Prasad and O’Neil 1979, Deutsch et a1 
1982). The one-component plasma consists of an assembly of N identical classical 
point particles each carrying a charge e and interacting through the v-dimensional 
Coulomb potential p(r), the solution of the Poisson equation Ap = 
- (24””T( v/2)-’e26(r), where A denotes the v-dimensional Laplace operator. To 
ensure charge neutrality, the particles are immersed in a uniform neutralising charge 
background. It may be said that the one-component plasma is the simplest model of 
a continuous Coulomb fluid and hence of considerable theoretical importance; in a 
theoretical context one of the main motivations to investigate the properties of such 
a system is related to one of the fundamental problems in statistical mechanics of 
charged particles, namely if classical statistical mechanics may describe a charge 
ordered state or a crystalline state in a classical model with long range Coulomb forces 
at sufficiently low temperature, in dimension v >  1 .  The two-dimensional case has 
received much attention lately and a number of exact and approximate theoretical 
results (Calinon et a1 1979, Bakshi et a1 1979, Alastuey and Jancovici 1981) as well as 
Monte Carlo and molecular dynamics experiments (Choquard et a1 1980, Caillol et a1 
1982, De Leeuw and Perram 1982) are known. There is some indication for the existence 
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of a first-order fluid-solid phase transition taking place in the system at low temperature 
(with the possibility of a weaker form of ordering termed ‘orientational’, i.e. long range 
correlation of bond angles more than a true crystal ordering, i.e. long range positional 
correlation) but a theoretical proof is still missing. A model which is similar to the 
two-dimensional one-component plasma, to be investigated in this work, is the one 
considered some years ago by Mehta (1967) in connection with his theory of random 
matrices ; this is the Mehta-Dyson one-dimensional model of plasma where the point 
particles are free to move on the straight line but where they still interact with the 
two-dimensional genuine logarithmic Coulomb potential; a harmonic potential which 
attracts each particle independently toward the origin has been added in order to 
ensure some stability in the system. This one-dimensional model bears some analogy 
with the two-dimensional one-component plasma: it is also unusual in that a number 
of exact results are known at some particular values of the temperature; some of the 
exact results may now be established at any temperature (see for example the Mehta 
formula for the exact solution of the free energy density (Mehta 1967)); we wish also 
to mention that the existence of the thermodynamic limit for the free energy cannot 
be proved by standard methods like the v-dimensional one-component plasma where 
the Coulomb force is the genuine v-dimensional interaction (Lieb and Narnhofer 1975, 
Sari and Merlini 1976, Albeverio et a1 1983, Martinelli and Merlini 1984); in relation 
to the Mehta formula it would also be interesting to investigate the system by Monte 
Carlo or molecular dynamics techniques in order to test the amount of precision 
involved. In this work we follow another approach and compute the thermodynamics 
of the system using and testing a method recently introduced with success in a 
preliminary treatment of the two-dimensional one-component plasma (Johannesen and 
Merlini 1983). We first introduce the model and compute the harmonic approximation 
in § 2; our method of extrapolation involving the exact results of systems with a very 
small number of particles, i.e. N S 4, is then used in § 3 where we obtain a very accurate 
estimate of the thermodynamic limit for the free energy density (the exact solution is 
derived in the appendix). The same method is also applied independently to compute 
the correlation energy, which is found in particular to be continuous up to very low 
temperature; this as expected indicates the absence of any first-order phase transition 
in the model, a situation very different from that recently found in the two-dimensional 
one-component plasma. In 9 4 we briefly give our concluding remarks. 

2. The model and the harmonic approximation 

2.1. Dejinition of the model 

The model we consider consists of a gas of N point charges with positions x,, x2, . . . , xN 
free to move on the infinite straight line --CO < x < 00. The potential energy of the gas 
is given by (Mehta 1967) 

N N .. .. 
H = f e 2  2 xf -e2  2 In(xi-xjl 

i = l  icj 

where {xi} are the coordinates of the point charges and e is the unit charge. The model 
is the one-dimensional analogue of the two-dimensional one-component plasma (Sari 
et a1 1976). The first term in (1) represents a harmonic potential which attracts each 
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charge independently towards the point x = 0, taken as the origin; the second term 
represents an electrostatic repulsion between each pair of charges (the two-dimensional 
long range Coulomb logarithmic potential on the line). The partition function is given 
by 

Q N  = J w ’ x \  e-PH{dx,}, X, E RI. 

In order to obtain an extensive free energy in the thermodynamic limit, N+m,  we 
define V N  the reduced partition function 

where y = ( k T ) - ’ e 2  = Be’ is the coupling parameter and Ho is the ground state energy. 
Ho is determined by the unique equilibrium configuration {xlo} given by 

{xio} are the zeros of the Hermite polynomial of order N and Ha is given VN by 
(Mehta 1967) 

N 

H o = ~ N ( N - 1 ) ( 1 + l n 2 ) - ~  i ln i .  
I =  I 

Notice that H({xi}) 3 Ho, V {x,} f {Xio}. 

2.2. The strong y limit and the harmonic approximation 

Contrary to the two-dimensional Coulomb plasma, where the logarithmic interaction 
is the genuine two-dimensional Coulomb interaction, it is not possible here to derive 
rigorous lower and upper bounds for the free energy, using the stability property given 
by (5) or by standard use of the Jensen inequality. The first aim is then to compute 
exactly the harmonic approximation, which should be very accurate at low temperature 
(high value of y) .  To do this, we consider (3) and expand the Hamiltonian around 
the equilibrium positions {xno}, the solution of (4), and retain only quadratic terms in 
the displacements {&I, i.e. with x i  = xl0 + 6, Vi ,  we have 

where xy0 = x , ~  - xJo and s,, = 6, - sJ. Notice that the factor N! in (6) comes from the 
fact that there are N !  possible ways to place the N charges at the equilibrium positions 
{xlo}. Expanding the In in (6), retaining only quadratic terms in the displacements {ez}, 
and introducing the change of variable (,( y)“’ = a, and writing ai, = a, - aJ, we obtain 
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the harmonic approximation which reads 

= [ ( N ! ) ” 2 / ( y ) N ’ 2 ]  5 {da,} exp[-f(aAa)] 

= ( N  ! ) ‘12(2  T )  N / 2 / (  Det/A(N)I)”2 (7) 

where A”’ is the N x N square matrix associated with a = ( a l ,  a2, . . . , a N ) .  
Det A”’ should be of the order N ! ;  an indication for this (a mathematical proof 

will probably require the explicit use of some properties of the Hermite polynomials) 
is the following: if { A : N ’ } ,  i = 1,2,3, . , . , N, are the eigenvalues of A(N), then from (7), 
we have that 

N 

Tr A”’ = AI“’  = N + c I X , ~ -  x,,l-*. (8) 
I = I  ‘fJ 

Since the equilibrium positions {xl0} satisfy the equation (Mehta 1967) 
N c xfo= c /x,o/-2 
i= 1 i f ]  

we obtain 

so that A‘,” = i, i = 1,2,3,  , . . , N, should be the eigenvalues of A(N), V N and det A(N’  = 
N ! .  In fact, an explicit computation shows that the { A ! ” }  are as above for N up to 
4. In any case, for every N (see appendix), we obtain the harmonic approximation, 
which reads 

The extensive harmonic approximation to the free energy defined by Qk = exp(-PfhN) 
reads 

and is similar to that computed for the two-dimensional one-component plasma. 

3. Extrapolation method 

To obtain our estimate for the free energy density and the correlation energy of the 
system in the thermodynamic limit, we use a very simple method of extrapolation 
introduced recently for the two-dimensional one-component plasma (Johannesen and 
Merlini 1983). Given an observable ON (in this paper the free energy density or the 
correlation energy of the model with N particles), the method consists in computing 
exactly ON(?),  for identical systems just consisting of very few particles, i.e. N = 
1 ,2 ,3 ,4 ,  N s 4, or N s 5, for a large range of the coupling constant y. 
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The amount of information contained in ON(y), N G 4, and a careful analysis of 
the way in which the asymptotic limit limN+= ON = 0 is approached (which, for the 
two-dimensional one-component plasma and the present model, may be derived 
rigorously at the particular values y = 2) suggest the znsatz 

ON = 0 + ax + bx In x + cx2 + . . . (1 1) 

where x = I,”, and a, b, c,. . . depend on y. a, b, c are determined by the exact 
knowledge of ON, N s 4. We now apply the method to obtain our estimate for the 
free energy density in the thermodynamic limit. 

3.1. The free energy density 

We consider identical systems consisting of N S 4 particles. What we need is the exact 
partition function QN, for every y (equation (3)). For the two-dimensional model this 
may be done by computer (Johannesen and Merlini 1984); in the one-dimensional 
case here, some exact analytical results are available. In fact for N s 3 and Vy it has 
been proved that (Mehta 1967) 

= exp(-Pf”). (12) 
For N = 4 we have also verified (1 2) up to y = 8. In the following we also assume that 
(12) is correct for N = 4  and every y. (This may also be verified using computer 
calculations (see also the acknowledgments and appendix).) Moreover, it is known 
that in the one-dimensional case (12) has been proved to be correct for all N at 
y = 1 , 2 , 4  (Mehta 1967). With PfN resp. Pfh, as defined by (12) and (lo), the excess 
free energy PAfN for N G 4 is given by 

P A f N I Y  =(PfN-Pf”IY 
= ~ l n N ! / y N + ~ ( N - l ) ( l n y - l - l n 2 ) + -  1 N  i l n i  

2N 

The computations of y-‘AfN(y) for N = 1 ,2 ,3 ,4  at some particular values of y are 
given in table 1. 

Table 1. 

Y Y - I w  Y - ‘ A f i  Y ’ A f 3  Y Y ’ A f 4  

2 0 0.993 01 9 x I O - *  1.551 3 7 3 ~ 1 0 - ~  1.91 1 718 x 10-2 
4 0 0.256 875 x 0.400 I 2  I x I 0-2 0.493 400 x 1 O-’ 

20 0 1.041 06 X 1.619 522 x 1.995 550 X 

40 0 2.603 787 X 4.050 395 x 4.990 707 X IO-’ 
60 0 1.157 3324 X IO-’ 1.800 030 X lo-’  2.218 243 X 

80 0 0.651 0179 x 1.012 698 x IO-’ 1.247 792 X I 0-5 
100 0 0.416 657 X IO-’ 0.648 I35 X I 0-5 0.798 595 x 
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Using the above values and our ansatz (1 1) with c = 0, we have than obtained our 
estimate for the free energy density in the thermodynamic limit as given in table 2 
(y-'Af( 1 ,2 ,3)  and y-'Af(2,3,4) obtained with N = 1 , 2 , 3  resp. N = 2,3,4). In table 3 
we given our estimate y-'Af(I, 2 ,3 ,4)  obtained with N = 1 ,2 ,3 ,4  and the thermody- 
namic limit y-'AfM, as it follows from Mehta's formula, to be discussed below. As 
expected and as may be seen from tables 2 and 3, the estimate of table 3 obtained 
with N = 1,2,3,4 is the best one. 

Table 2. 

Y 

2 
4 

20 
40 
60 
80 

IO0 

V ' A f U ,  2,3) 

0.036 320 06 
0.009 302 5 I7 
0.000 375 503 67 

0.000 041 7375 
0.000 023 4778 
0.000 015 025 93 

0.000 939 0413 

Y-14f(2, 3,4) 

0.038 546 3682 
0.009 848 067 95 
0.000 397 164 56 
0.000 099 3 18 04 
0.000 044 143 57 
0.000 024 83 1 20 
0.000015892 10 

Table 3. 

2 0.040 009 273 0.040 530 733 
4 0.010 206 550 0.010335 173 

20 0.000 dl I 397 0.000416 5281 
40 0.000 102 8755 0.000 104 157 
60 0.000 045 724 6 I 0.000 046 2945 
80 0.OOO 025 7205 0.000 026 04 I 

0.000 0 16 666 IO0 0.000 0 I6 46 1 26 

3.2. Mehta s conjecture 

From a conjecture of Mehta (1967), the thermodynamic limit for the free energy density 
is given by 

(14) N - r E  lim Q,, = ( 2 ~ / y ) " ' e x p ( N [ ( t y + t )  In (+y) - iy+f In  2 ~ - 1 n ( t y ! ) ] }  

so that 

Equation (14), for every y, follows from the result given in the appendix. The strong 
coupling limit y + CO in ( 1  5 )  coincides exactly with our harmonic approximation given 
by (IO) ,  i.e. A f / y = O .  The anharmonic corrections in the strong coupling limit from 
(15) are obtained using the Stirling formula applied to (y/2)!, which gives 

- AfM(y+CO)=o+---+. 1 1  . . . 
Y 6 y 2  45y4 
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This shows that the harmonic approximation is 'almost exact' for y 2  100. As an 
example, at y = 100 the absolute error for p f /  y given by this approximation is 0.166 x 

while the relative error is 0.1%. On the other hand, at the same value y = 100 
our estimate underestimates the free energy pf/ y only by the absolute amount 2 x lo-' 
(see table 3), with a relative error of only Our estimate for the free energy 
turns out to be better than the harmonic approximation in the whole range of y. As 
is seen from table 3, our method of extrapolation with N = 1 ,2 ,3 ,4  particles gives an 
excellent estimate of the free energy in the thermodynamic limit. In the range y > 60 
the absolute error is < and the relative error to the free energy pf/ y is smaller 
than lo-'. Moreover it may be checked that the errors decrease as y increases. Our 
estimate for f agrees well with the exact solution at any temperature derived in the 
appendix. 

Our results explicitly show how a very accurate description of the thermodynamic 
limit of the free energy density may be obtained using the amount of information from 
systems with a very small number of particles, in conjunction with a careful ansatz. 
The plot of our estimate for f is given in figure 1 .  

L 
40 50 60 70 80 

'd 

Figure 1. The curve y-'Aff-  y - ' f ; "  (A) (extrapolation with N = 2,3,4) from table 2, the 
curve y-'Af= y- ' f ;" (B) (extrapolation with N = I ,  2 ,3 ,4)  from table 3 and y-'AfM = y - ' L  
(C) equation (15) (Mehta's formula), as a function of y. 

3.3. The correlation energy 

The same method of extrapolation ( 1  1) may be used to obtain an estimate for the 
correlation energy in the thermodynamic limit. Using (12) for N ~ 4 ,  and defining 

E N  = - N-'(d/dy) In QN, (17) 
it may be easily seen from (1 2) that for N G 4, 

N-1 1 N-1 1 
E N  =- E N -  I +- +- In z +$ In N +-[[IL(z + 1)- N+(zN + l)] 

N 4Nz 2 N  2 N  

where E ,  = 1/42, z = y /2  and $(z) = T'(z)/T(z). (Notice T ( n )  = ( n  - l)!.) On the other 
hand, the thermodynamic limit EM, for the correlation energy, using the exact result 
given by (15), reads 

(19) EM = $[[IL(z + 1) - In z]. 
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Using (IS), (1 1) with N = 1,2,3,4,  we computed our estimate for the correlation energy 
E( 1,2,3,4)  which is given in table 4, together with the values of EM computed with (19). 

2 0.21 1 935 889 0.21 I 392 167 
4 0.114948085 0.114818577 

20 0.024 588 879 0.024 583 74 
40 0.012 397 141 0.012 395 859 
60 0.008 287 612 0.008 287 042 
80 0.006 224 280 0.006 223 960 

100 0.004 983 5392 0.004 983 334 

As for the free energy density, the results of table 4 show an excellent agreement 
between our estimate and the thermodynamic limit as given by Mehta's formula. Here 
too, it may easily be verified that at y = 100 the absolute absolute error for E is smaller 
than while the relative error is 4 x lo-'. This may be compared with the absolute 
resp. relative error given by the harmonic approximation (10) at y = 100 given by 
1.67 x lo-' resp. 3.3 X which is less accurate. For illustration the results of table 
4 are plotted in figure 2. 

20 40 60 80 
li 

Figure 2. The correlation energy E ,  given by (19) (Mehta's formula) and the estimate 
E( 1 , 2 , 3 , 4 )  from table 4 (full circles). 

4. Conclusions 

In this work we have used a method of extrapolation to compute thermodynamics of 
the Mehta-Dyson one-dimensional model of plasma with long range interaction. The 
amount of statistical information contained in the exact results of the phase space of 
small systems consisting of just a few particles N s 4 allows a very accurate estimate 
of the thermodynamic properties of the model in a wide range of temperature, and 
the results constitute a test for the usefulness of the method we have followed. The 
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harmonic approximation is almost exact in the temperature range y > 100; nevertheless 
our estimates with N = 1 ,2 ,3 ,4  turn out to give a better description of the thermody- 
namics in the whole range of temperature considered. Although the thermodynamic 
functions are analytic in the infinite volume limit, the model is well suited to test the 
various approximations usually made for Coulomb fluids; and the method may be 
employed further to investigate the amount of precision involved in ideal Monte Carlo 
or molecular dynamic computations. Moreover the method is expected to yield accurate 
computations and estimates in the more difficult two-dimensional case where a first- 
order phase transition is expected to take place in the system at low temperature. 
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Appendix 

A l .  Proof of Mehta's formula (exact solution) for all values of the coupling constant y 
((12 and (14)) 

The formula of Mehta is given by 

dx ,  . . . dxN e-YH I (LN(Y)  = 
R,ON 

where r ( l  + x ) = x !  and H = i Z z ,  X ~ - X ~ < ~ = ,  N lnlx,-x,l. 
(Al) was proven for y = 1 ,2 ,4  and for every N by Mehta. One can prove (Al) for 

every y, using a result on multiple integrals given by Selberg (1944), which reads 

N N N 
~ $ ~ ( y ) =  Io'. . . I,' dx ,  dx,.  . . dxN xp-' n (1 -x,)'-' n I x ; - x , ~ ~ '  

, = I  I =  I I < / = ,  

r ( l  + k z )  T[a+(k-l)z]I ' [P+(k-l)z] = E (  k = i  r(1 +Z) r ( a + p + ( k + N - Z ) z )  

We then consider (A2) with z = y / 2 ,  a = P = & y L 2  + 1 and the change of variable 
x ' = ( L + y , ) / L  so that y ,  E(-& +L) .  With (A2), we then obtain 

C$N( N, z = $7, a = p = &yL* + 1) 
+ L  + L  
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so that 

Using Stirling's formula x! =exp[(x +i) In x - x +f In 2.rr +o(l/x)] in (A3) we have that 

As L+ CO, the first term converges to t j N ( y )  and o(L), on the right-hand side, converges 
to 0. We thus obtain 

which is (Al), and Mehta's formula is proved for every y. So, the Mehta-Dyson model 
of plasma with long range interaction is another example of an exactly solvable model 
of statistical mechanics. It also follows from (Al) that the free energy is analytic in 
y ,  so that no phase transition occurs. 

A2. The harmonic approximation 

We now derive the harmonic approximation (9) using (Al) above. Following (6) and 
(7), the harmonic approximation is given by 

= lim [ . . . [ dxl . . . dxN exp[- y ( H  - HO)I/JN!. 
Y-m 

From (Al), we have that 
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Using Stirling's formula x !  = exp[(x +f) In x - x +f In 2n]  in (A5), we obtain 

-- +N(y)-exp[X~kN=I (fyk+f)ln(fyk)-X,N=, f y k + f N l n 2 n + o ( l / y ) ]  
JG - exp[N(fy+f)  lnty-fNy+:N In 2n](N!)'12(y)yN(N-1)/4 

where o( l /y)+O as y + w .  
Explicitly 

$N(Y)/(NV2 = (2.rr/Y)N'2 exp(-yH,), as y + w ,  

where Ho is given by ( 5 ) .  We finally obtain 

OhN(Y> = ;\& QN(Y) = (2.rr/Y)N/2 

which proves (9) at very low temperatures (large y). (This of course does not prove 
that A("= i ,  i = 1,2 , .  . . , N, VN, but in particular proves that DetlA"'I = N ! ,  V N ,  i.e. 
the harmonic approximation as we had conjectured on the basis of the exact results 
for N = 1,2,3,4.) 
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